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ABSTRACT

We review exact studies on finite-sized 2 dimensional Ising models and show that
the point for an infinite-sized model at the critical temperatureis a point of non-
uniform approach in the temperature-size plane. We also illuminate some strong
effects of finite-size on quantities which do not diverge at the critical point. We
then review Monte Carlo studies for 3 dimensional Ising models of various sizes
(L =2-100) at various temperatures. From these results we find that the data
for the renormalized coupling constant collapses nicely when plotted against the
correlation length, determined in a system of edge length L, divided by L. We
also find that ¢, /L > 0.26 is definitely too large for reliable studies of the critical
value, g*, of the renormalized coupling constant. We have reasonable evidence
that &7, /L ~ 0.1 is adequate for results that are within one percent of those for
the infinite system size. On this basis, we have conducted a series of Monte Carlo
calculations with this condition imposed. These calculations were made practical
by the development of improved estimators for use in the Swendsen-Wang cluster
method. We found from these results, coupled with a reversed limit computation
(size increases with the temperature fixed at the critical temperature), that
g~ > 0, although there may well be a sharp downward drop in g as the critical
temperature is approached in accord with the predictions of series analysis. Our
results support the validity of hyperscaling in the 3 dimensional Ising model.

We investigate the question of hyperscaling in the three dimensional Ising model by
studying the renormalized coupling constant, g*. The property of hyperscaling refers
to relations between the critical indices which directly involve the spatial dimension,
d. For example, just above the critical temperature, T,

£oc (T —T)", Cno(T—T)", (1)

where £ is the correlation length (we will be concerned here with the second moment
definition) and Cy is the specific heat at constant magnetic field (H). Then a typical
hyperscaling relation would be

dv=2—q. (2)
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Fig. 1. Plot of gK/K, vs. K. The top

line is the series analysis estimate for an
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conditions.

The renormalized coupling constant, has the property that if it is finite, hyperscaling
holds, and hyperscaling fails if g* = 0. g* is bounded from above and can not be
infinity, or negative either for that matter in the Ising model. It can be computed as
the limit as the temperature approaches the critical temperature from above of
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where v is the volume of a unit cell, a is the lattice spacing, x(K) is the magnetic
susceptibility, K is the exchange energy divided by the temperature, and H is the mag-
netic field. The limit L — oo in (4) is to emphasis that the limit of infinite system size
must be taken first. Field theoretic calculations! give g(K.,o00) ~ 23.7, but Tamayo
and Gupta? give the results of their Monte Carlo calculations as g(K.,large) ~ 6.

In order to better understand the nature of the problem of the computation of
the renormalized coupling constant in the three dimensional Ising model, let us first



consider the problem in two dimensions. We know that hyperscaling holds for this
model. Baker? has used the Markov property method to compute the exact results
for this quantity for 2, 4, 6, 8, and 10 edged square-lattices with periodic boundary
conditions. His results are displayed in Fig. 1. There are several things to be observed
in these results. The first is that for successively higher values of L, the finite size
results agree with the infinite sized results for larger and larger values of K. The
second is that at the critical temperature (which we know exactly here) the value of
9(K., L) seems stuck at low values. Baker pointed out we can compute the value of
g* when the limit is taken from the low temperature side from the results of Essam
and Hunter ¢. This value is about —656, thus it is not so surprising that the value
of g(K., L) comes out to be intermediate between the thermodynamic results from
the two different sides. In finite size theory this effect is thought of as “critical point
rounding” because g is the ratio of divergent quantities. The other key feature for our
study is, as Baker pointed out, that the finite size curves approach the limit rather
more slowly than one might have anticipated. For an accuracy of about 1%, it is
necessary that {/L < 1/(7+ 1) to represent the infinite system-size limit.

The next question to be investigated therefore is the finite size behavior of the
renormalized coupling constant in three dimensions. By use of a standard Monte
Carlo method Baker and Erpenbech® have investigated this point. Their results are
shown in Fig. 2. They found good data collapse when ¢(K) was plotted against
&1/ L, where £, is the correlation length (estimated from long wave-length values of
the frequency-dependent, magnetic susceptibility) found for the system of size L. It
is clear from their analysis that /L > 0.26 is definitely too large for reliable studies.
They found by careful examination, include exact calculations of the results for the
two-cube and the three-cube, the £, /L & 0.1 seems to be sufficient for results that
are within 1% of those for an infinite sized system.

With these results in mind, we have undertaken® a series of Monte Carlo calcula-
tions of g(K, L) for the three-dimensional Ising model, being careful to use only those
cases for which £, /L ~ 0.1. This restriction poses a considerable numerical challenge
because 9>y /9OH? is the difference of two terms, each of which is about (L/£)¢ ~ 1000
times larger than the answer. In order to proceed, we have developed new estimators
within the framework of the Swendsen-Wang cluster algothrim. Now, in terms of the
moments of the magnetization,

L) 3 — () -

g(K7L> = (E <M2>

It is well known that an improved estimator for the second moment of the magneti-
zation is just the average cluster size,’

o) = (£ v2). (0
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where V. is the number of sites in cluster ¢. For the fourth moment, we have the

estimator, - < <Z V2) > ., <ZV4> . (7)

For the correlation length, we follow Cooper et al.® and use,

f<z¥>z4|smz¥/2|2(1—@) L owith x(B) = (MEP/LL )

as an estimator for ¢ 2, where M (k) is defined by M(k ) Y rexp(—ik - ¥)sy. In the
actual calcuations, we used the 6 smallest values of |K | in the determination. We
have run a series of computations on this basis for cubes which are 8, 16, 32, and 64
sites on each edge, with periodic boundary conditions. The results are displayed in
Fig. 3.

A few further remarks are in order here. In order to control possible systematic
errors, we have computed the exact results for the 2-cube and the 3-cube at £ = 0.2
and 0.3 respectively. The results for the 2-cube were 2.2% below the series estimates
for an infinite system, and those for the 3-cube, 0.8% low. In addition we have run
extremely long and highly accurate Monte Carlo calculations for £ = 0.8 and find
that they are about 0.2% below the unbiased series estimates. The series results are
felt to be very accurate for these values and we believe from these comparisons that
our Monte Carlo results should be within one per cent plus the Monte Carlo error
of the infinite system values. The previous series results’ which tended to zero are



T T T T T T
1
1
26.0 | i E
T - 1
| 0 . 1
\i 1
1
1
Y
240 | H —
—~ 1
v 1
1
> iy
I 1
m/\ 1
= 1 -5
Xo 22.0 H
= 1
X 1
~— 1
1
1
1
200 F ° Mor‘1te Carlo . ' ]
O Series analysis 1
~&— RG value for the NL  o-model :
1
1
1
L L L L L I
18.0
0.50 0.60 0.70 0.80 0.90 1.00 1.10

Cc

Fig. 3. The renormalized coupling constant (times (K/K,.)!®) vs. K/K.. The solid line represents
the series extrapolations as far as their apparent errors are less than the size of our dots. The
dashed continuation is drawn in to guide the eye. The symbols § denote our Monte Carlo results
with one-sigma error bars attached. The symbols O are from the same type of analysis as in the
work of ref. 9. Cross comparison with other analyses shows that realistic errors on this series
extrapolation are sufficiently large so as not to exclude our current Monte Carlo results. The field
theoretic renormalization group value is indicated by .

here seen to be too low. We believe that they did not take proper account of the
subdominate terms. Our present results indicate that the value of gx < 25 and if, as
indicated by the series analysis, there is a sharp drop in g(K) as the critical point is
approached, then our results are in reasonable accord with the field theory estimates.

We have done some further calculations beyond those which have been reported
previously. We have repeated the calculations of Tamayo and Gupta? referred to
earlier. To do this we needed an estimate of the critical temperature. Guttmann!®,
using series analysis quotes K, = 0.221657 &+ 12 and Ferrenberg and Landau!! quote
K. =0.2216595 1+ 26. Using the maximum spread on these two estimates to establish
a temperature range for study, we have computed without attempting very high
precision, the results which we show in Fig. 4. It is to be noted that to this accuracy
(say plus or minus about 3% for each data point) there is no clearly discernable
trend in system size over this temperature range. In two dimensions the value at K,
increases with system size. We conclude that here g(K,,large) ~ 5.0 & 0.3, which is
more or less in agreement with Tamayo and Gupta who saw a slightly larger value
with larger system size. The importance of these calculations is that assuming that
the structure here is the same as that of the results in two dimensions, they should
provide a lower bound to g* of about 5, which as it is greater than zero means that
hyperscaling holds.
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